Angles α and β are angles in standard position such that: α terminates in Quadrant II and sinα = 3/5, β terminates in Quadrant I and cosβ = 4/5 Find cos(α + β).

Respuesta :

We are given

Angles α and β are angles in standard position

and

α terminates in Quadrant II

β terminates in Quadrant I

and we have

[tex]sin(\alpha)=\frac{3}{5}[/tex]

we can use triangle and find cos(α)

we get

[tex]cos(\alpha)=-\frac{4}{5}[/tex]

and we have

[tex]cos(\beta)=\frac{4}{5}[/tex]

we can draw triangle

[tex]sin(\beta)=\frac{3}{5}[/tex]

now, we can use formula

[tex]cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)[/tex]

now, we can plug values

[tex]cos(\alpha+\beta)=-\frac{4}{5}\times \frac{4}{5}-\frac{3}{5}\times \frac{3}{5}[/tex]

now, we can simplify it

[tex]cos(\alpha+\beta)=-\frac{16}{25}-\frac{9}{25}[/tex]

[tex]cos(\alpha+\beta)=-\frac{(16+9)}{25}[/tex]

[tex]cos(\alpha+\beta)=-\frac{(16+9)}{25}[/tex]

[tex]cos(\alpha+\beta)=-\frac{25}{25}[/tex]

[tex]cos(\alpha+\beta)=-1[/tex]...............Answer

Ver imagen rejkjavik
Ver imagen rejkjavik