Darcy harvests 8\dfrac348


4


3


​ 8, start fraction, 3, divided by, 4, end fraction acres of corn every \dfrac56


6


5


​ start fraction, 5, divided by, 6, end fraction of an hour. Darcy harvests corn at a constant rate.

Respuesta :

Given that, Darcy harvests [tex]8\frac{3}{4}[/tex]acres of corn every [tex]\frac{5}{6}[/tex] of an hour.

Total area harvests = [tex]8\frac{3}{4}[/tex].

Total time taken =[tex]\frac{5}{6}[/tex] of an hour.

We need to find the rate of harvesting per hour in acres per hour.

In order to find the rate, we need to divide Total area divide by total time take.

Therefore,

Rate =[tex]8\frac{3}{4}[/tex] ÷ [tex]\frac{5}{6}[/tex].

= [tex]\frac{35}{4}[/tex] ÷ [tex]\frac{5}{6}[/tex].

= [tex]\frac{35}{4} \times \frac{6}{5}[/tex]

= [tex]\frac{7 \times3}{2}[/tex]=[tex]\frac{21}{2}[/tex]

= [tex]10\frac{1}{2}[/tex] acres per hour.

Therefore, [tex]10\frac{1}{2}[/tex] acres does she harvest per hour.


Answer:

10 1/2

Step-by-step explanation:

You must just be smart to be able to do this, and I am a scholar.