Simplify 3 square root of 5 end root minus 2 square root of 7 end root plus square root of 45 end root minus square root of 28.

2 square root of 12
2 square root of 2
6 square root of 5 end root minus 4 square root of 7
6 square root of 10 end root minus 4 square root of 14

Respuesta :

Simplify √ 45 to 3√ 5 and √ 28 to 2√ 7

Which gives you (3√5 +3√ 5 )+(−2√ 7 −2√ 7 )

Combine like terms = 6√ 5 −4√ 7

So the answer would be

6 square root of 5 end root minus 4 square root of 7

Answer:

Hence, the simplified expression is:

       6 square root of 5 end root minus 4 square root of 7.

i.e.     [tex]6\sqrt{5}-4\sqrt{7}[/tex]

Step-by-step explanation:

We are asked to simplify the expression:

3 square root of 5 end root minus 2 square root of 7 end root plus square root of 45 end root minus square root of 28.

which mathematically is given by:

[tex]3\sqrt{5}-2\sqrt{7}+\sqrt{45}-\sqrt{28}[/tex]

Since, we know that:

[tex]\sqrt[45}=\sqrt{3\times 3\times 5}\\\\i.e.\\\\\sqrt{45}=3\sqrt{5}[/tex]

and

[tex]\sqrt{28}=\sqrt{2\times 2\times 7}\\\\i.e.\\\\\sqrt{28}=2\sqrt{7}[/tex]

i.e. we need to simplify:

[tex]3\sqrt{5}-2\sqrt{7}+3\sqrt{5}-2\sqrt{7}[/tex]

Now, we combine the like terms as follows:

[tex]=3\sqrt{5}+3\sqrt{5}-2\sqrt{7}-2\sqrt{7}\\\\=6\sqrt{5}-4\sqrt{7}[/tex]