Respuesta :

Answer:

The angle V is [tex]58^{\circ}[/tex]

Explanation:

In [tex]\triangle YWX [/tex]

Sum of the measure of the angles of a triangle is equal to 180 degree.

therefore,

[tex]\angle YWX +\angle YXW+\angle WYX = 180^{\circ}[/tex]    ......[1]

Substitute the values of [tex]\angle YWX=52^{\circ}[/tex] and  [tex]\angle YXW=24^{\circ}[/tex] in [1]

then;

[tex]52^{\circ}+24^{\circ}+\angle WYX = 180^{\circ}[/tex] 0r

[tex]76^{\circ} + \angle WYX =180^{\circ}[/tex]

Simplify:-

[tex]\angle WYX = 104^{\circ}[/tex]

Vertical opposite angle states that the angles opposite each other when two lines cross and they are always equal.

[tex]\angle WYX [/tex]  and [tex]\angle VYU [/tex] are vertically opposite.

therefore, by definition of vertical opposite angle;

[tex]\angle VYU=\angle WYX = 104^{\circ}[/tex]

now, In [tex]\triangle VYU [/tex]

Sum of the measure of the angles of a triangle is equal to 180 degree.

therefore,

[tex]\angle YVU +\angle YUV+\angle VYU= 180^{\circ}[/tex]    ......[1]

Substitute the values of [tex]\angle YUV=18^{\circ}[/tex] and  [tex]\angle VYU=104^{\circ}[/tex] in [1]

then;

[tex]\angle YVU+18^{\circ}+104^{\circ}= 180^{\circ}[/tex] 0r

[tex]\angle YVU+122^{\circ}=180^{\circ}[/tex]

On simplify:

[tex]\angle YVU = 58^{\circ}[/tex]

Therefore, the angle V is, 58 degree.