Respuesta :
Answer:
a) Backward - [tex]\Delta p = - 195000\,kg\cdot \frac{m}{s}[/tex], Forward - [tex]\Delta p = + 195000\,kg\cdot \frac{m}{s}[/tex], Directly sideways - [tex]\Delta p = \pm 195000\,kg\cdot \frac{m}{s}[/tex], b) Backward - [tex]\Delta K = -50895000\,J[/tex], Forward - [tex]\Delta K = + 66105000\,J[/tex], Directly sideways - [tex]\Delta K = + 7605000\,J[/tex].
Explanation:
a) All scenarios are analyzed by means of the Principle of Momentum Conservation and the Impact Theorem.
Case I - Backward
[tex]\Delta p = -(3000\,N)\cdot (65.0\,s)[/tex]
[tex]\Delta p = - 195000\,kg\cdot \frac{m}{s}[/tex]
Case II - Forward
[tex]\Delta p = +(3000\,N)\cdot (65.0\,s)[/tex]
[tex]\Delta p = + 195000\,kg\cdot \frac{m}{s}[/tex]
Case III - Directly sideways
[tex]\vec p _{2}-\vec p_{1} = 0\,\frac{kg\cdot m}{s}\cdot i \pm 195000\, \,\frac{kg\cdot m}{s}\cdot j[/tex]
The magnitude of the change of the probe's translational momentum is:
[tex]\Delta p = \pm 195000\,kg\cdot \frac{m}{s}[/tex]
b) The change in kinetic energy is given by the Work-Energy Theorem:
Case I - Backward
The final speed of the probe is:
[tex]v= 300\,\frac{m}{s}-\left(\frac{3000\,N}{2500\,kg}\right)\cdot (65\,s)[/tex]
[tex]v = 222\,\frac{m}{s}[/tex]
The change in kinetic energy is:
[tex]\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(222\,\frac{m}{s} )^{2}-(300\,\frac{m}{s} )^{2} \right][/tex]
[tex]\Delta K = -50895000\,J[/tex]
Case II - Forward
The final speed of the probe is:
[tex]v= 300\,\frac{m}{s}+\left(\frac{3000\,N}{2500\,kg}\right)\cdot (65\,s)[/tex]
[tex]v = 378\,\frac{m}{s}[/tex]
The change in kinetic energy is:
[tex]\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(378\,\frac{m}{s} )^{2}-(300\,\frac{m}{s} )^{2} \right][/tex]
[tex]\Delta K = + 66105000\,J[/tex]
Case III - Directly sideways
The final speed of the probe in the direction perpendicular to the motion line is:
[tex]v= 0\,\frac{m}{s}+\left(\frac{3000\,N}{2500\,kg}\right)\cdot (65\,s)[/tex]
[tex]v = 78\,\frac{m}{s}[/tex]
The change in kinetic energy is:
[tex]\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(300\,\frac{m}{s} )^{2} + (78\,\frac{m}{s} )^{2} -(300\,\frac{m}{s} )^{2} \right][/tex]
[tex]\Delta K = + 7605000\,J[/tex]