Respuesta :

using (f ○ g)(x) = f(g(x))

substitute x = [tex]\frac{7}{x}[/tex] into f(x)

f( [tex]\frac{7}{x}[/tex]) = 4 / ([tex]\frac{7}{x}[/tex] - 3 ) × [tex]\frac{x}{x}[/tex]

= [tex]\frac{4x}{7-3x}[/tex]

The denominator of f(g(x)) cannot be zero as this would make f(g(x)) undefined. Equating the denominator to zero and solving gives the value that x cannot be

solve 7 - 3x = 0 ⇒ x = [tex]\frac{7}{3}[/tex]

domain : x ∈ ( - ∞, [tex]\frac{7}{3}[/tex]) ∪ ( [tex]\frac{7}{3}[/tex], + ∞ )