keeping in mind that 21 months is more than a year, since there are 12 months in a year, then 21 months is really 21/12 years.
[tex]\bf ~~~~~~ \stackrel{\textit{account A}}{\textit{Simple Interest Earned}} \\\\ I = Prt\qquad \begin{cases} I=\textit{interest earned}\dotfill &15.75\\ P=\textit{original amount deposited}\dotfill \\ r=rate\to 3\%\to \frac{3}{100}\dotfill &0.03\\ t=years\to \frac{21}{12}\dotfill &\frac{7}{4} \end{cases} \\\\\\ 15.75=P(0.03)\left( \frac{7}{4} \right)\implies \cfrac{15.75}{(0.03)\left( \frac{7}{4} \right)}=P\implies \boxed{300=P}[/tex]
[tex]\bf ~~~~~~ \stackrel{\textit{account B}}{\textit{Simple Interest Earned}} \\\\ I = Prt\qquad \begin{cases} I=\textit{interest earned}\dotfill &28\\ P=\textit{original amount deposited}\dotfill \\ r=rate\to 4.9\%\to \frac{4.9}{100}\dotfill &0.049\\ t=years\to \frac{21}{12}\dotfill &\frac{7}{4} \end{cases} \\\\\\ 28=P(0.049)\left( \frac{7}{4} \right)\implies \cfrac{28}{(0.049)\left( \frac{7}{4} \right)}=P\implies \boxed{326.53\approx P}[/tex]
so, clearly, you can see who's greater.