WHERE DOES THE PYTHAGOREAN IDENTITY SIN2 Θ + COS2 Θ = 1 COME FROM? HOW WOULD YOU USE IT TO FIND THE SINE COSINE AND TANGENT VALUES OF THE ANGLE?

Respuesta :

frika

Consider right triangle ABC wit hright angle C. Then by the Pythagorean theorem,

[tex]AB^2=AC^2+BC^2.[/tex]

Divide this equality by [tex]AB^2:[/tex]

[tex]\dfrac{AB^2}{AB^2}=\dfrac{AC^2}{AB^2}+\dfrac{BC^2}{AB^2},\\ \\1=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{BC}{AB}\right)^2.[/tex]

Note that

[tex]\dfrac{AC}{AB}=\cos \angle A,\\ \\\dfrac{BC}{AB}=\sin \angle A.[/tex]

Then

[tex]1=\cos^2 \angle A+\sin^2 \angle A.[/tex]

Suppose that you know the sine of the angle, then tha cosine of the angle can be determined as

[tex]\cos \angle A=\pm\sqrt{1-\sin^2 \angle A}.[/tex]

If you divide the equality [tex]1=\cos^2 \angle A+\sin^2 \angle A[/tex] by the [tex]\cos ^2 \angle A,[/tex] you get

[tex]\dfrac{1}{\cos^2 \angle A}=1+\tan^2 \angle A\Rightarrow \tan^2 \angle A=\dfrac{1}{\cos^2 \angle A}-1.[/tex]