Respuesta :

We are given : m∠GAH = 62° m∠ADB = 148°.

We need to find : m∠AFD.

m∠GAH = 62° = m<FAD                : Vertical angles.

m∠ADB + m<ADF = 180°               : Linear pair angles.

Substituting m∠ADB = 148°

148° + m<ADF = 180°

Subtracting 148 from both sides, we get

148°-148 + m<ADF = 180°-148

m<ADF = 32°

Now,

Sum of all angles of a triangle is =180°.

Therefore,

m<FAD + m<ADF + m∠AFD = 180°.

Substituting m<FAD = 62° and  m<ADF = 32°, we get

62+32 + m∠AFD = 180°.

94 + m∠AFD = 180°

Subtracting 94 from both sides, we get

94-94 + m∠AFD = 180°-94

m∠AFD = 86°.

Therefore, m∠AFD = 86°.