Respuesta :

Answer-

The maximum area that they can fence off is 6400 ft²

Solution-

Organizers of an outdoor concert will use 320 feet of fencing to fence off a rectangular vip section.

i.e the perimeter of the rectangular section is 320 feet

Let us assume,

x = length of the rectangular section

y = breadth of the rectangular section

Hence,

[tex]\Rightarrow 2(x+y)=320\\\\\Rightarrow x+y=160\\\\\Rightarrow y=160-x[/tex]

Now, we have to find the maximum area for which they can fence that off.

The area of the rectangular section is,

[tex]=x\cdot y[/tex]

So we have to maximize the area function.

[tex]\Rightarrow f(x)=x\cdot y[/tex]

Putting the value of y,

[tex]\Rightarrow f(x)=x\cdot (160-x)=160x-x^2[/tex]

[tex]\Rightarrow f'(x)=160-2x[/tex]

[tex]\Rightarrow f''(x)=-2[/tex]

Finding the critical values,

[tex]\Rightarrow f'(x)=0[/tex]

[tex]\Rightarrow 160-2x=0[/tex]

[tex]\Rightarrow 2x=160[/tex]

[tex]\Rightarrow x=80[/tex]

∵ f"(x) is negative (i.e -2), so for the value of x=80, f(x) or area function will be maximum.

[tex]f(x)_{\text{at x=80}}=f(80)=160(80)-(80)^2=12800-6400=6400[/tex]

Therefore, the maximum area that they can fence off is 6400 ft²