Respuesta :

f(x)=-3*4^(1-x)

= -3 * 4^1 * 4^(-x)

= -12 4^(-x)

= -12 (1/4)^x


Answer:

[tex]f(x) = -12(\frac{1}{4})^x[/tex]

Step-by-step explanation:

Given function,

[tex]f(x)=-3\times 4^{1-x}[/tex]

Using the product rule of exponent i.e. [tex]a^m.a^n=a^{m+n}[/tex]

[tex]f(x) = -3 \times 4 \times 4^{-x}[/tex]

[tex]f(x) = -12\times 4^{-x}[/tex]

Using power of power rule of exponent i.e. [tex](a^b)^c = a^{bc}[/tex]

[tex]f(x) = -12(4^{-1})^x[/tex]

Since, [tex]a^m =\frac{1}{a^{-m}}[/tex]

[tex]\implies f(x) = -12(\frac{1}{4})^x[/tex]

Which is the required form of [tex]f(x) = ab^x[/tex]

Where,

a = -12, b = 1/4