Answer-
Area of the triangle is 10 sq.units
Solution-
We know that,
[tex]\text{Area of the triangle}=\dfrac{1}{2}[{x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)][/tex]
Taking,
(x₁, y₁) = (3, 3)
(x₂, y₂) = (3, -1)
(x₃, y₃) = (-2, -5)
Then putting these in the formula,
[tex]\text{Area of the triangle}=\dfrac{1}{2}[3(-1+5)+3(-5-3)-2(3+1)][/tex]
[tex]=\dfrac{1}{2}[3(4)+3(-8)-2(4)][/tex]
[tex]=\dfrac{1}{2}[12-24-8][/tex]
[tex]=\dfrac{1}{2}[-20][/tex]
[tex]=-10[/tex]
As area can not be negative, ignoring negative sign,
[tex]\text{Area of the triangle}=10[/tex]