Respuesta :

we can use formula

[tex]y=alog_b(x+c)+d[/tex]

We can see that each options has base=2

so, we can take b=2

[tex]y=alog_2(x+c)+d[/tex]

and each options has added 6

so, d=6

[tex]y=alog_2(x+c)+6[/tex]

now, we can select each points

At x=0 , y=4

[tex]4=alog_2(0+c)+6[/tex]

[tex]-2=alog_2(c)[/tex]

At x=-3 , y=6:

[tex]6=alog_2(-3+c)+6[/tex]

[tex]alog_2(-3+c)=0[/tex]

Since, 'a' can not be 0

so,

[tex]log_2(-3+c)=[/tex]

we can solve for c

we can take exponent over 2

[tex]2^{log_2(-3+c)}=2^0[/tex]

[tex]-3+c=1[/tex]

[tex]c=4[/tex]

now, we can plug it back

[tex]-2=alog_2(4)[/tex]

and then we can solve for a

[tex]-2=alog_2(2^2)[/tex]

[tex]-2=2alog_2(2)[/tex]

[tex]2a=-2[/tex]

[tex]a=-1[/tex]

now, we can plug these values

and we get

[tex]y=-log_2(x+4)+6[/tex].................Answer