[tex]a_{n}[/tex] = 3[tex]a_{n-1}[/tex] - 8, with [tex]a_{1}[/tex] = 7
generate the first few terms of the sequence
[tex]a_{1}[/tex] = 3 + 4 = 7
[tex]a_{2}[/tex] = 3² + 4 = 9 + 4 = 13
[tex]a_{3}[/tex] = 3³ + 4 = 237 + 4 = 31
[tex]a_{4}[/tex] = [tex]3^{4}[/tex] + 4 = 81 + 4 = 85
the sequence is 7, 13, 31, 85, .....
Checking the recursive formulae given the one that generates the sequence is
[tex]a_{n}[/tex] = 3[tex]a_{n-1}[/tex] - 8 with [tex]a_{1}[/tex] = 7, as
[tex]a_{2}[/tex] = (3 × 7 ) - 8 = 21 - 8 = 13 ← correct
[tex]a_{3}[/tex] = (3 × 13 ) - 8 = 39 - 8 = 31 ← correct
[tex]a_{4}[/tex] = (3 × 31 ) - 8 = 93 - 8 = 85 ← correct