Respuesta :

Given expression: [tex]\log _2\left(\log _5\left(x\right)\right)=3[/tex].

[tex]\mathrm{Apply\:log\:rule}:\quad \:a=\log _b\left(b^a\right)[/tex]

[tex]3=\log _2\left(2^3\right)=\log _2\left(8\right)[/tex]

[tex]\log _2\left(\log _5\left(x\right)\right)=\log _2\left(8\right)[/tex]

[tex]\mathrm{For\:}\log _2\left(\log _5\left(x\right)\right)=\log _2\left(8\right)\mathrm{,\:\quad solve\:}\log _5\left(x\right)=8[/tex]

[tex]\log _5\left(x\right)=8[/tex]

Converting log to exponential form.

[tex]log_{b} x = a \ \ \ \ =>x = b^a[/tex]

[tex]x = 5^8[/tex]

x=390625.

Therefore, correct option is C: x=390,625.

Answer:

I took the test and got 100%

1. B

2. D

3. A

4. Answer will vary

5. f will equal g when the value of X is less than 0

g is greater than f if the value of X is less than 0

f is greater than g if the value of X is greater than 0

6. C

7. C

8. B

9. B

10. C

Feel free to mark as brainliest and your welcome in advance :)