The point-slope form:
[tex]y-y_1=m(x-x_1)[/tex]
We have the point (-3, -1) and the slope m = 3/5. Substitute:
[tex]y-(-1)=\dfrac{3}{5}(x-(-3))\\\\y+1=\dfrac{3}{5}(x+3)\qquad\text{use distributive property}\\\\y+1=\dfrac{3}{5}x+\dfrac{9}{5}\qqua\text{subtract 1 from both sides}\\\\y=\dfrac{3}{5}x+\dfrac{4}{5}\qquad\text{multiply both sides by 5}\\\\5y=3x+4\qquad\text{subtract 3x from both sides}\\\\-3x+5y=4\qquad\text{change the signs}\\\\3x-5y=-4[/tex]
Answer:
point-slope form: y + 1 = 3/5(x + 3)
slope-intercept form: y = 3/5x + 4/5
standard form: 3x - 5y = -4