A tennis ball machine serves a ball vertically into the air from a a height of 2 feet, with an initial 110 feet per second. What is the maximum height, in feet, the ball will attain?

Respuesta :

Thank you for posting your question here. I hope the answer below will help. 


Vo=110 feet per second 

h0=2 feet 

So, h(t) = -16t^2 +110t +2 

Take the derivative: h'(t) = 110 -32t 

The maximum height will be at the inflection when the derivative crosses the x-axis aka when h'(t)=0. 

So, set h'(t)=0 and solve for t: 

0 = 110 -32t 

-110 = -32t 

t=3.4375 

t=3.44 seconds 


The maximum height, in feet, of the ball will attain 190.0 ft.

How to find the maximum height of the tennis ball machine?

Vertically into the air from a height of 2 feet

[tex]Y_{0}[/tex] = 2 feet

Initial height 110 feet per second

[tex]V_{0}[/tex] = 110 ft/s

[tex]Y_{max}[/tex] = ?

Formula:

[tex]V_{f} = V_{0} - g*t[/tex]

[tex]Y_{f} = Y_{0} + V_{0} *t - g*(t^2)/2[/tex]

1) [tex]Y_{max} = V_{f} = 0[/tex]

2) [tex]V_{f} =0[/tex] [tex]=V_{0} - g*t[/tex]

Where, t = [tex]V_{0}[/tex]/ g

[tex]g = 32.174 ft /s^2[/tex]

[tex]t = [110 ft/s ] / (32.174 ft/s^2)[/tex]

t = 3.419 s

3) [tex]Y_{f} = Y_{max}[/tex]

[tex]= 2ft + 110ft/s * 3.419s - (32.174 ft/s^2) (3.419s)^2 / 2[/tex]

= 190.0 ft

Therefore, the maximum height, in feet, of the ball will attain 190.0 ft.

To learn more about the maximum height

https://brainly.com/question/8801837

#SPJ2