Answer: Energy required for the ionization of mercury is [tex]-13.952\times 10^{-15}kJ[/tex]
Explanation: Energy of the electron in a hydrogen-like ion is given by the equation:
[tex]E_n=\frac{(-2.18\times 10^{-18})\times Z^2}{n^2}J[/tex]
where, Z = atomic number
n = principle quantum number
Ionization energy is the energy required to release the outermost electron from an isolated gaseous atom.
For the ionization of mercury, the equation follows:
[tex]Hg^{79+}\rightarrow Hg^{80+}+e^-[/tex]
Mercury has an atomic number = 80
As, in this element 79 protons are already released, which means that the electronic configuration for [tex]Hg^{79+}[/tex] is [tex]1s^1[/tex]
and the principle quantum number for the last ionization step = 1
Putting the values in energy equation, we get
[tex]E_1=\frac{(-2.18\times 10^{-18})\times (80)^2}{(1)^2}J=-13952\times 10^{-18}J[/tex]
[tex]E_1=-13.952\times 10^{-15}kJ[/tex] (Conversion Factor: 1kJ = 1000J)