What is the length of side BC of the triangle? Enter your answer in the box. units Triangle A B C with horizontal side B C. Vertex A lies above side B C. Angle B and angle C are marked congruent. The length of side A C is labeled as x plus 8. The length of side A B is labeled as 2 x minus 1. The length of side B C is labeled as 3 x minus 3.

Respuesta :

Answer:  Length of BC = 24 units.

Explanation:


Given that in triangle ABC, BC is the base, and angle B = angle C

SInce two angles are equal, ABC is isosceles with sides AB = AC

Given that AC = x+8 and AB = 2x-1

Since AB = AC we get these two are equal.  Use this t solve for x.

x+8 = 2x-1

x =9.

It is easy to find BC now.

BC =3x-3

Hence BC =3(9)-3 = 24

Length of BC= 24 units.

Answer:

24 unites

Step-by-step explanation:

Given that in triangle ABC, BC is the base, and angle B = angle C

SInce two angles are equal, ABC is isosceles with sides AB = AC

Given that AC = x+8 and AB = 2x-1

Since AB = AC we get these two are equal.  Use this t solve for x.

x+8 = 2x-1

x =9.

It is easy to find BC now.

BC =3x-3

Hence BC =3(9)-3 = 24

Length of BC= 24 units.