Respuesta :
Given problem is
[tex]\frac{2}{3}w-\frac{1}{4}=\frac{2}{3}\left(w-\frac{1}{4}\right)[/tex]
Here unknown variable is w so we will solve this equation for w.
Common denominator for given denominators 3 and 4 is 12 so we can multiply both sides by 12 so that we can cancel out all the fractions
[tex]\frac{2}{3}w\cdot12-\frac{1}{4}\cdot12=\frac{2}{3}\cdot12\left(w-\frac{1}{4}\right)[/tex]
[tex]\frac{24}{3}w-\frac{12}{4}=\frac{24}{3}\left(w-\frac{1}{4}\right)[/tex]
[tex]8w-3=8\left(w-\frac{1}{4}\right)[/tex]
[tex]8w-3=8w-\frac{8}{4}[/tex]
[tex]8w-3=8w-2[/tex]
[tex]8w-8w=3-2[/tex]
[tex]0=1[/tex]
We know that 0=1 is not possible
Hence there is no solution for w.
Answer:
No solution
Step-by-step solution:
We are given an expression:
[tex]\frac{2}{3} w-\frac{1}{4} =\frac{2}{3} (w-\frac{1}{4} )[/tex]
We have only one variable [tex]w[/tex] so we will make [tex]w[/tex] the subject and solve for it.
[tex]\frac{2}{3} w-\frac{1}{4} =\frac{2}{3} (w-\frac{1}{4} )[/tex]
Solving the brackets first to get:
[tex]\frac{2}{3} w -\frac{1}{4} =\frac{2}{3} -\frac{1}{6}[/tex]
Taking LCM on both sides to get:
[tex]\frac{8w-3}{12} =\frac{4w-3}{6}[/tex]
By cross multiplication:
[tex]6(8w-3)=12(4w-3)[/tex]
[tex]48w-18 = 48w -36[/tex]
[tex]48w - 49w -18 + 36 = 0[/tex]
[tex]w[/tex] gets cancelled so we are left with [tex]18\neq 0[/tex]
Therefore, [tex]w[/tex] has no solution.