Respuesta :
Answer-
[tex]\boxed{\boxed{y=-3}}[/tex]
Solution-
The two points given here are (-2,-3) and (3,-3).
We can derive the straight line equation between these two points by applying two points formula.
[tex]\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}[/tex]
Here,
x₁ = -2
y₁ = -3
x₂ = 3
y₂ = -3
Putting the values,
[tex]\Rightarrow \dfrac{y-(-3)}{-3-(-3)}=\dfrac{x-(-2)}{3-(-2)}[/tex]
[tex]\Rightarrow \dfrac{y+3}{-3+3}=\dfrac{x+2}{3+2}[/tex]
[tex]\Rightarrow \dfrac{y+3}{0}=\dfrac{x+2}{5}[/tex]
[tex]\Rightarrow 5(y+3)=0(x+2)[/tex]
[tex]\Rightarrow 5(y+3)=0[/tex]
[tex]\Rightarrow y+3=0[/tex]
[tex]\Rightarrow y=-3[/tex]
Therefore, the equation of the line is [tex]\Rightarrow y=-3[/tex]
