Respuesta :
Solution :-
Given -
The two sides other than hypotenuse = 7 cm and 24 cm
By using Pythagoras Theorem.
(Hypotenuse)² = √(Base)² + (Perpendicular)²
Let the hypotenuse of the given triangle be x cm
⇒ (x)² = √(7)² + (24)²
⇒ √49 + 576
⇒ √625
⇒ 25
So, the length of hypotenuse is 24 cm.
Answer:
[tex]x=25[/tex]
Step-by-step explanation:
From the given statement, it is given that ABC is a right triangle which is right angled at B and AC=x, AB=24 and BC=7.
Then, using the Pythagoras theorem , we have
[tex](AC)^2=(AB)^2+(BC)^2[/tex]
Substituting the given values, we have
[tex]x^2=(24)^2+(7)^2[/tex]
[tex]x^2=576+49[/tex]
[tex]x^2=625[/tex]
[tex]x=25[/tex]
Therefore, the value of x is 25.
