Which function does not have a vertical asymptote? A) y=(x) /(1-x²) . B) y=(5x) /(1-2x²) . C) y=(5x-1) /(3+x^2) . D) (5x) /(x+x²) .

Respuesta :

frika

A function has a vertical asymptote [tex]x=a[/tex] at point a, where the denominator becomes equal to 0.

A. The denominator of the function [tex]f(x)=\dfrac{x}{1-x^2}[/tex] turns into 0 at [tex]x=1[/tex] or [tex]x=-1.[/tex] Then [tex]x=1[/tex] and [tex]x=-1[/tex] are two vertical asymptotes of this function.

B. The denominator of the function [tex]f(x)=\dfrac{5x}{1-2x^2}[/tex] turns into 0 at [tex]x=\sqrt{\frac{1}{2}}[/tex] or [tex]x=-\sqrt{\frac{1}{2}}[/tex]  Then [tex]x=\sqrt{\frac{1}{2}}[/tex]  and [tex]x=-\sqrt{\frac{1}{2}}[/tex]  are two vertical asymptotes of this function.

C. The denominator of the function [tex]f(x)=\dfrac{5x-1}{3+x^2}[/tex] never turns into 0, then this function hasn't any asymptotes.

D. The denominator of the function [tex]f(x)=\dfrac{x}{x+x^2}[/tex] turns into 0 at [tex]x=0.[/tex] Then [tex]x=0[/tex] is vertical asymptote of this function.

Answer: correct choice is C.

Answer:

C. y= (5x-1)/(3+x^2)

Step-by-step explanation:

a p e x