Answer:
1. [tex](3d+1)(d^2-2)[/tex] ---> B. [tex]3d^3+6d^2-6d-2[/tex]
2. [tex](d-1)(3d^2+2d+2)[/tex] ---> C. [tex]=3d^3-d^2-2[/tex]
3. [tex](3d^21)(d+2)[/tex] ---> A. [tex]3d^3+6d^2-d-2[/tex]
Step-by-step-explanation:
We are three different expressions on the left side with three different products on the right side and we are supposed to match each expression with its product.
So first we will solve each of the expression and then see which product choice matches with which expression.
1. [tex](3d+1)(d^2-2)[/tex]
[tex]=3d^3-6d+d^2-2[/tex]
[tex]=3d^3+6d^2-6d-2[/tex]
2. [tex](d-1)(3d^2+2d+2)[/tex]
[tex]=3d^3+2d^2+2d-3d^2-2d-2[/tex]
[tex]=3d^3-d^2-2[/tex]
3. [tex](3d^21)(d+2)[/tex]
[tex]=3d^3+6d^2-d-2[/tex]
Therefore,
1. [tex](3d+1)(d^2-2)[/tex] ---> B. [tex]3d^3+6d^2-6d-2[/tex]
2. [tex](d-1)(3d^2+2d+2)[/tex] ---> C. [tex]=3d^3-d^2-2[/tex]
3. [tex](3d^21)(d+2)[/tex] ---> A. [tex]3d^3+6d^2-d-2[/tex]