Answer: x=3 and JM=9 units
Step-by-step explanation:
Given: [tex]\triangle{JMK}[/tex] in which BM is a perpendicular bisector of JK such that JB=BK and [tex]\angle{JBM}=\angle{KBM}[/tex].
Now in [tex]\triangle{JMB}\ and \triangle{KBM}[/tex]
JB=BK [given]
[tex]\angle{JBM}=\angle{KBM}[/tex] [right angle]
MB=MB [reflexive property]
[tex]\Rightarrow\triangle{JMB}\cong\triangle{KBM}[/tex] [by SAS postulate of congruence]
⇒MJ=MK
[tex]\Rightarrow9x-18=3x\\\Rightarrow9x-3x=18\\\Rightarrow6x=18\\\Rightarrow\ x=3[/tex]
Thus JM=[tex]9(3)-18=27-18=9[/tex]
Hence, x=3 and JM=9 units