Respuesta :

so the triangle is shown that these two triangles are congruent. so you set the equation on both sides


9x-18 = 3x

-18 = -6x

x = 3

now that you know x you plug into the equation of JM

Answer: x=3 and JM=9 units


Step-by-step explanation:

Given: [tex]\triangle{JMK}[/tex] in which BM is a perpendicular bisector of JK such that JB=BK and [tex]\angle{JBM}=\angle{KBM}[/tex].

Now in [tex]\triangle{JMB}\ and \triangle{KBM}[/tex]

JB=BK   [given]

[tex]\angle{JBM}=\angle{KBM}[/tex]    [right angle]

MB=MB [reflexive property]

[tex]\Rightarrow\triangle{JMB}\cong\triangle{KBM}[/tex] [by SAS postulate of congruence]

⇒MJ=MK

[tex]\Rightarrow9x-18=3x\\\Rightarrow9x-3x=18\\\Rightarrow6x=18\\\Rightarrow\ x=3[/tex]

Thus JM=[tex]9(3)-18=27-18=9[/tex]

Hence, x=3 and JM=9 units