Respuesta :

The test of rational roots let us check the possible rational roots of a polynomial.

  • The possible rational roots are: [tex]\±1, \±3, \±5, \±9, \±15[/tex] and [tex]\±45[/tex].
  • The actual roots are -3 and 3

Possible Rational Roots

The polynomial is given as:

[tex]f(x) = x^4 - 4x^3 - 4x^2 + 36x - 45[/tex]

The leading term of the polynomial is: 1.

The factors of 1 is [tex]\±1[/tex]

The constant term of the polynomial is: -45

The factors of -45 are [tex]\±1, \±3, \±5, \±9, \±15, \±45[/tex]

So, the possible rational roots (r) are:

[tex]r = \frac{\±1, \±3, \±5, \±9, \±15, \±45}{\±1}[/tex]

Split

[tex]r = \frac{\±1}{\±1}, \frac{\±3}{\±1}, \frac{\±5}{\±1}, \frac{\±9}{\±1}, \frac{\±15}{\±1}, \frac{\±45}{\±1}[/tex]

Simplify each division

[tex]r = \±1, \±3, \±5, \±9, \±15, \±45[/tex]

The Actual Roots

We have:

[tex]f(x) = x^4 - 4x^3 - 4x^2 + 36x - 45[/tex]

Expand

[tex]f(x) = x^4 -4x^3 + 5x^2 - 9x^2 + 36x - 45[/tex]

Factorize

[tex]f(x) = x^2(x^2 -4x + 5) - 9(x^2 -4x + 5)[/tex]

Factor out [tex](x^2 -4x + 5)[/tex]

[tex]f(x) = (x^2 - 9)(x^2- 4x + 5)[/tex]

Express 9 as [tex]3^2[/tex]

[tex]f(x) = (x^2 - 3^2)(x^2- 4x + 5)[/tex]

Express [tex]x^2 - 3^2[/tex] as difference of two squares

[tex]f(x) = (x - 3)(x+3)(x^2- 4x + 5)[/tex]

[tex](x^2 -4x + 5)[/tex] cannot be factorized.

So, the actual roots are:

[tex]x - 3 = 0\ or\ x + 3 = 0[/tex]

Solve for x

[tex]x = 3\ or\ x = -3[/tex]

Hence, the actual roots are -3 and 3

Read more about rational and actual roots at:

https://brainly.com/question/19553416

-3 is the least and 3 is the greatest

Step-by-step explanation:on edg