Respuesta :
GIven: A Quadrilateral ABCD in which [tex]\frac{Area\triangle ABD}{Area\triangle ACD} =\frac{1}{2}[/tex].BH is an altitude in ΔABD and CL is an altitude in △ACD.
To Find: BH : CL
Solution: We know, Area of a triangle = 1/2 × Base × Altitude
Area (Δ A B D)= 1/2 × BH × AD, where BH is altitude and AD is base.-----(1)
Area (Δ A CD) = 1/2 × CL × AD ,where CL is an altitude and AD is base.
--------------------------------(2)
Dividing (1) by (2), we get
→[tex]\frac{Area\triangle ABD}{Area\triangle ACD} = \frac{BH}{CL}[/tex]
As, [tex]\frac{Area\triangle ABD}{Area\triangle ACD}=\frac{1}{2}[/tex]
So, [tex]\frac{BH}{CL}= \frac{1}{2}[/tex]

Answer:
BH:CL=1:2
Step-by-step explanation:
We are given that a quadrilateral ABCD,
[tex]\frac{Ar\triangle ABD}{Ar\triangle ACD}=\frac{1}{2}[/tex]
BH is an altitude in triangle ABD and CL is an altitude in triangle ACD.
We have to find the BH:CL
We know that
Area of triangle=[tex]\frac{1}{2}\times base\times height[/tex]
Area of triangle ABD=[tex]\frac{1}{2}\times AD\times BH[/tex]
Area of triangle ACD=[tex]\frac{1}{2}\times AD\times CL[/tex]
Substitute the values then we get
[tex]\frac{\frac{1}{2}\times AD\times BH}{\frac{1}{2}\times AD\times CL}=\frac{1}{2}[/tex]
[tex]\frac{BH}{CL}=\frac{1}{2}[/tex]
Hence, BH:CL=1:2
