Respuesta :

I get the answer [tex]\frac{8\sqrt{145}}{145}[/tex]

The decimal is 0.66436

Multiply [tex]\sqrt{145} *\sqrt{145} =145=\frac{9\sqrt{145} }{145}[/tex]

Use the identity [tex]\sqrt{1-x^2}[/tex]

plug in

you get my answer.



The expression [tex]\sin(\cos^{-1}(-\frac{9}{\sqrt{145}}))[/tex] is a trigonometric expression, and the result of evaluating [tex]\sin(\cos^{-1}(-\frac{9}{\sqrt{145}}))[/tex] is [tex]\frac{8}{\sqrt{145}}[/tex]

How to evaluate the expression?

The expression is given as:

[tex]\sin(\cos^{-1}(-\frac{9}{\sqrt{145}}))[/tex]

In a right triangle, we have:

sin(x) = opp/hyp

cos(x) = adj/hyp

This means that:

hyp² = 145

adj = 9

The opposite side is then calculated using:

opp = √(hyp² - adj²)

So, we have:

opp = √(145 - 9²)

Evaluate

opp = √64

Evaluate

opp = 8

Recall that:

sin(x) = opp/hyp

So, we have:

[tex]\sin(x) = \frac{8}{\sqrt{145}}[/tex]

Hence, the result of evaluating [tex]\sin(\cos^{-1}(-\frac{9}{\sqrt{145}}))[/tex] is [tex]\frac{8}{\sqrt{145}}[/tex]

Read more about trigonometry at:

https://brainly.com/question/11967894

#SPJ2