Respuesta :

Answers: a = III, b=positive, c= π/6, d=C, e=√3

a) [tex]\frac{19\pi}{6} - \frac{12\pi}{6} = \frac{7\pi}{6}[/tex] which is located in Quadrant III.

b) cos is negative and sin is negative so cot (cos/sin) is positive.

c) [tex]\frac{7\pi}{6} - \pi = \frac{\pi}{6}[/tex]

d) cot(π/6)

e) cot = [tex]\frac{cos}{sin}[/tex] = [tex]\frac{-\sqrt{3} }{-1} = \sqrt{3}[/tex]

***********************************************************************************

Answers: BC = [tex]\sqrt{17}[/tex], AC = [tex]2\sqrt{17}[/tex],

30°-60°-90° triangle has corresponding sides of: b - b√3 - 2b

AB = b√3

AB = √51

⇒ b√3 = √51  

⇒ b = √17

BC = b

⇒ BC = √17

AC = 2b

⇒ AC = 2√17