Respuesta :

Here we are given the function:

[tex]f(x)=b^{x}[/tex]

Steps to find inverse are :

Step 1:

First replace f(x) by y.

[tex]y=b^{x}[/tex]

Step 2:

Replace every  x with a  y and replace every  y with an  x.

[tex]x=b^{y}[/tex]

Step 3:

Solve the equation from step 2 for y.

[tex]x=b^{y}[/tex]

Taking log on both sides:

[tex]logx=log(b^{y})[/tex]

[tex]logx=ylogb[/tex]

[tex]y=\frac{logx}{logb}[/tex]

Answer:

Inverse function is :

[tex]y=\frac{logx}{logb}[/tex]

Answer:

Answer is F^1(y)= logb^y

Step-by-step explanation: Apex:)