Respuesta :
Here we are given the function:
[tex]f(x)=b^{x}[/tex]
Steps to find inverse are :
Step 1:
First replace f(x) by y.
[tex]y=b^{x}[/tex]
Step 2:
Replace every x with a y and replace every y with an x.
[tex]x=b^{y}[/tex]
Step 3:
Solve the equation from step 2 for y.
[tex]x=b^{y}[/tex]
Taking log on both sides:
[tex]logx=log(b^{y})[/tex]
[tex]logx=ylogb[/tex]
[tex]y=\frac{logx}{logb}[/tex]
Answer:
Inverse function is :
[tex]y=\frac{logx}{logb}[/tex]
Answer:
Answer is F^1(y)= logb^y
Step-by-step explanation: Apex:)