Answer:
Option A is correct
[tex]f^{-1}(x) = 9x+18[/tex]
Step-by-step explanation:
Given the function:
[tex]f(x) =\frac{1}{9}x-2[/tex]
Let y = f(x)
then;
[tex]y=\frac{1}{9}x-2[/tex]
Replace x and y values we have;
[tex]x=\frac{1}{9}y-2[/tex]
Add 2 to both sides we have
[tex]x+2=\frac{1}{9}y[/tex]
Multiply both sides by 9, to solve for y
[tex]9(x+2) = y[/tex]
or
y = 9(x+2)
replace [tex]y = f^{-1} (x)[/tex] then;
[tex]f^{-1}(x) = 9(x+2)[/tex]
⇒[tex]f^{-1}(x) = 9x+18[/tex]
therefore, the inverse of f(x) is, [tex]f^{-1}(x) = 9x+18[/tex]