Respuesta :

(4x - 3)(2x - 1) ≥ 0

First, find the zeros:

4x - 3 = 0         2x - 1 = 0

x = [tex]\frac{3}{4}[/tex]               x = [tex]\frac{1}{2}[/tex]

Next, plot these points and choose test points on the outside and between the zeros:

←-------0------[tex]\frac{1}{2}[/tex]------[tex]\frac{5}{8}[/tex]------[tex]\frac{3}{4}[/tex]------1------→

Lastly, plug in the test points and look for a positive result (since it is greater than 0).

Test Point 0: [4(0) - 3][2(0) - 1]  = ( - )( - ) = +  THIS WORKS!

Test Point [tex]\frac{5}{8}[/tex]: [4([tex]\frac{5}{8}[/tex]) - 3][2([tex]\frac{5}{8}[/tex]) - 1]  = ( - )( + ) = -  This does NOT work

Test Point 1: [4(1) - 3][2(1) - 1]  = ( + )( + ) = +  THIS WORKS!

Answer: x ≤ [tex]\frac{1}{2}[/tex]   or   x ≥ [tex]\frac{3}{4}[/tex]

Interval Notation: (-∞, [tex]\frac{1}{2}[/tex]] U [[tex]\frac{3}{4}[/tex], ∞)

Graph: ←------[tex]\frac{1}{2}[/tex]          [tex]\frac{3}{4}[/tex]--------