Respuesta :

Answer:

Given: Diameter of cone = 38 feet and height of cone = 14 feet.

Volume of cone V with radius r is one-third the area of the base B times the height h.

i,e  [tex]V = \frac{1}{3} B \cdot h[/tex] = [tex]\frac{1}{3} \pi r^2h[/tex]  ......[1]

,where B = [tex]\pi r^2[/tex]

First find the radius(r);

Using Diameter(D) = 2r

38 =2r

Divide both side by 2 we get;

[tex]\frac{38}{2} =\frac{2r}{2}[/tex]

Simplify:

19 = r

or r =19 feet

Now, substitute the value of r = 19 feet and h = 14 feet in [1]    [ Use value of  [tex]\pi = \frac{22}{7}[/tex] ]

then, we have:

[tex]V = \frac{1}{3} \pi r^2h = \frac{1}{3} \cdot  \frac{22}{7} \cdot (19)^2 \cdot (14)[/tex]

or

V = [tex]=\frac{1}{3}\cdot 22 \cdot 19 \cdot 19 \cdot  2 = \frac{22 \cdot 19 \cdot 19 \cdot 2}{3}[/tex]

or

V = [tex]\frac{15884}{3} =5,294.66667[/tex] ≈ 5,294.67 cubic feet.

therefore, the volume of pile is; ≈ 5,294.67 cubic feet.