Respuesta :

Solve for x by simplifying both sides od the equation, then isolating the variable.

x=79/12

Answer:

Given the equation: [tex]\log_{\frac{3}{4}} 25 = 3x-1[/tex]

Solve for x;

Use logarithmic rules:

[tex]\log_b a = \frac{\log a}{\log b}[/tex]

Then;

[tex]\frac{\log 25}{\log \frac{3}{4}} =3x-1[/tex]

Using values of:

[tex]\log 25 = 1.39794001[/tex]

[tex]\log \frac{3}{4} = -0.124938737[/tex]

Substitute these values we have;

[tex]-\frac{1.39794001}{0.124938737} = 3x-1[/tex]

Simplify:

[tex]-11.1890039 =3x-1[/tex]

Add 1 to both sides we get;

-10.1890039 = 3x

Divide both sides by 3 we get;

[tex]x = - 3.39633463[/tex]

Therefore, the approximate  value of x in the equation  [tex]\log_{\frac{3}{4}} 25 = 3x-1[/tex] is -3.396