Respuesta :
The slope-intercept form:
[tex]y=mx+b[/tex]
m - slope
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
b - y-intercept.
We have the points (-4, 7) and (6, -8). Substitute:
[tex]m=\dfrac{-8-7}{6-(-4)}=\dfrac{-15}{10}=-\dfrac{3}{2}[/tex]
Then, we have
[tex]y=-\dfrac{3}{2}x+b[/tex]
Put the coordinates of the point (-4, 7) to the equation of line:
[tex]7=-\dfrac{3}{2}(-4)+b\\\\7=3(2)+b\\\\7=6+b\quuad\text{subtract 6 from both sides}\\\\1=b[/tex]
Answer:
[tex]y=-\dfrac{3}{2}x+1[/tex]
Explanation:
Slope-intercept form: → [tex]y=mx+b[/tex]
m: represents the slope and is constant.
b: represents the y-intercept.
The y-intercept is the point on a graph at which the graph crosses the y-axis.
You had to used rise/run.
[tex]\frac{rise}{run}[/tex]
[tex]m=\frac{rise}{run}[/tex]
[tex]Slope=\frac{y^2-y^1}{x^2-x^1}[/tex]
[tex]rise=y^2-y^1[/tex]
[tex]run=x^2-x^1[/tex]
[tex](x^1,y^1)=(-4,6)[/tex]
[tex](x^2,y^2)=(7,-8)[/tex]
[tex]rise=y^2-y^1=-8-7=-15[/tex]
[tex]run=x^2-x^1=6--4=10[/tex]
[tex]-15/10[/tex]
But the slope is -15.
But the y-intercept is 10.
Hope this helps!