ANSWER
[tex]y-5=\frac{3}{4}(x-6)[/tex],Yes
[tex]y-5=-\frac{4}{3} (x-2)[/tex],NO
[tex]y-2=-\frac{3}{4} (x-6)[/tex],NO
[tex]y-2=\frac{3}{4}(x-2)[/tex],Yes
EXPLANATION
The line passes through these two points, [tex](6,5)[/tex] and[tex](2,2)[/tex].
We can use these two points to determine the slope of the line.
The formula for finding the slope of a line when at least two points are known is [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex].
We can choose [tex](x_1,y_1)=(6,5)[/tex] and [tex](x_2,y_2)=(2,2)[/tex] or [tex](x_1,y_1)=(2,2)[/tex] and [tex](x_2,y_2)=(6,5)[/tex].
We shall get the same result.
[tex]m=\frac{2-5}{2-6} =\frac{-3}{-4} =\frac{3}{4}[/tex].
We now determine the equation of the line using the poit-slope formula,
[tex]y-y_1=m(x-x_1)[/tex].
When we choose [tex](x_1,y_1)=(6,5)[/tex], then we will obtain,
[tex]y-5=\frac{3}{4}(x-6)[/tex] as the point-slope form.
When we choose [tex](x_1,y_1)=(2,2)[/tex], then we will obtain,
[tex]y-2=\frac{3}{4}(x-2)[/tex] as the point-slope form.