Answer:
[tex]f(x)=-a(x+2)(2x-1)(x-3)[/tex] where a>0.
To graph the the polynomial, begin in the left top of quadrant 2. Then draw downwards to the first real zero on the x-axis at -2. Cross the x-axis and then curve back up to 1/2 on the x-axis. Cross through again and curve back down to cross for the last time at 3 on the x-axis. The graph then ends going down towards the right in quadrant 4. It forms an s shape.
Step-by-step explanation:
The real zeros are the result of setting each factor of the polynomial to zero. By reversing this process, we find:
We write them together with an unknown leading coefficient a which is negative so -a.
[tex]f(x)=-a(x+2)(2x-1)(x-3)[/tex] where a>0
The leading coefficient of a polynomial determines the direction of the graph's end behavior.
To graph the the polynomial, begin in the left top of quadrant 2. Then draw downwards to the first real zero on the x-axis at -2. Cross the x-axis and then curve back up to 1/2 on the x-axis. Cross through again and curve back down to cross for the last time at 3 on the x-axis. The graph then ends going down towards the right in quadrant 4. It forms an s shape.