Respuesta :
[tex]Solution, n^{\left(\left(-6p\right)^3\right)}=n^{-216p^3}[/tex]
[tex]Steps:[/tex]
[tex]n^{\left(-6p\right)^3}[/tex]
[tex]\left(-6p\right)^3\\\\\mathrm{Apply\:exponent\:rule}:\quad \left(-a\right)^n=-a^n,\:\mathrm{if\:}n\mathrm{\:is\:odd},\\\left(-6p\right)^3=-\left(6p\right)^3,\\-\left(6p\right)^3\\\\\mathrm{Apply\:exponent\:rule}:\quad \left(a\cdot \:b\right)^n=a^nb^n,\\\left(6p\right)^3=6^3p^3,\\-6^3p^3[/tex]
[tex]n^{-6^3p^3}[/tex]
[tex]6^3=216,\\n^{-216p^3}[/tex]
[tex]The\:Correct\:Answer\:Is\:n^{-216p^3}[/tex]
[tex]Hope\:This\:Helps!!![/tex]
[tex]-Austint1414[/tex]
The simplification form of the expression [tex]\rm \left (n^{-6p}\right )^3[/tex] will be [tex]\rm n^{-216p^3 }[/tex].
What is simplification?
Making anything easier to accomplish or comprehend, as well as making it less difficult, is the definition of simplification.
The expression is given below.
[tex]\rm \rightarrow \left (n^{-6p}\right )^3[/tex]
Simplify the expression, then we have
[tex]\rm \rightarrow n^{(-6p)^3}\\\\\rm \rightarrow n^{-6^3p^3}\\\\\rm \rightarrow n^{-216p^3 }[/tex]
The simplification form of the expression [tex]\rm \left (n^{-6p}\right )^3[/tex] will be [tex]\rm n^{-216p^3 }[/tex].
More about the simplification link is given below.
https://brainly.com/question/12616840
#SPJ2