Respuesta :

Answer:

Given expression : [tex]\frac{9}{4}-2(4x+\frac{4}{3} )+\frac{5}{2}x[/tex]    ......[1]

Using distributive property:  [tex]a\cdot (b+c) =a\cdot b + a\cdot c[/tex]

[1]⇒   [tex]\frac{9}{4} - 2(4x) - 2(\frac{4}{3})+\frac{5}{2} x[/tex]

Simplify:

[tex]\frac{9}{4} - 8x - \frac{8}{3}+\frac{5}{2}x[/tex]

Like terms are those terms which are same variables.

Combine like terms: we get;

[tex](\frac{9}{4} - \frac{8}{3}) - 8x + \frac{5}{2}x[/tex]            ......[2]

[tex]\frac{27-32}{12} -8x +\frac{5}{2} x[/tex]

Simplify:

[tex]\frac{-5}{12} -8x +\frac{5}{2}x[/tex]  

or

[tex]\frac{-5}{12} - \frac{11}{2}x[/tex]  

we can write equation [2] as;

[tex]\frac{27}{12} - \frac{8}{3} - 8x + \frac{5}{2}x[/tex]

Combine like terms of x variables;

[tex]\frac{27}{12} - \frac{8}{3} - \frac{11}{2}x[/tex]

Therefore, the expressions which are equivalent to the Given expression are:

[tex]\frac{9}{4} - 2(4x) - 2(\frac{4}{3})+\frac{5}{2} x[/tex]

[tex]\frac{-5}{12} -8x +\frac{5}{2}x[/tex]  

[tex]\frac{27}{12} - \frac{8}{3} - \frac{11}{2}x[/tex]

[tex]\frac{-11}{2}x - \frac{5}{2}[/tex]