Respuesta :

gmany

The equation of a circle in standard form:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

(h, k) - center

r - radius

The center is a midpoint of MN. The formula of a midpoint:

[tex]\left(\dfrac{x_1+x_2}{2};\ \dfrac{y_1+y_2}{2}\right)[/tex]

We have M(2, 4) and N(9, 4). Substitute:

[tex]x=\dfrac{2+9}{2}=\dfrac{11}{2}=5.5\\\\y=\dfrac{4+4}{2}=\dfrac{8}{2}=4[/tex]

Therefore we have the center (5.5, 4) → h = 5.5 and k = 4.

The radius of a distance between the center and M.

The formula of a distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have the points (5.5, 4) and (2, 4) Substitute:

[tex]d=\sqrt{(4-4)^2+(2-5.5)^2}=\sqrt{0^2+(-3.5)^2}=\sqrt{3.5^2}=3.5[/tex]

Substitute to the equation of a circle:

[tex](x-5.5)^2+(y-4)^2=3.5^2\\\\\boxed{(x-5.5)^2+(y-4)^2=12.25}\to\boxed{C.}[/tex]

Answer:

(x − 5.5)2 + (y − 4)2 = 12.25

Step-by-step explanation: Just took the test and got it right

#Plato4Life#EdmentumFam

Ver imagen Shark597