Answer:
x=2
Step-by-step explanation:
3 ln(x) + 2 ln (4)= ln(128)
a ln (b) = ln b^a
In(x^3) + In (4^2)= In(128)
In(x^3) + In (16)= In(128)
ln a + ln b = ln (ab)
In(16x^3) = In(128)
raise each side to the power of e
e^ In(16x^3) = e ^In(128)
e^ ln cancels out
(16x^3) = (128)
divide by 16
(16x^3)/16 = (128)/16
x^3 = 8
take the cube root on each side
(x^3)^1/3 = 8^ 1/3
x =2