Respuesta :

Answer:

a=64  and b=0

Step-by-step explanation:

[tex]z=-1-\sqrt{3}i[/tex]

use [tex]z=e^{ix}=cosx+isinx[/tex]

Now we find out x using given z

[tex]z=-1-\sqrt{3}i[/tex]

Multiply and divide the right side by -2

[tex]z=-2(\frac{1}{2} +\frac{\sqrt{3}}{2})[/tex]

We know cos(pi/3) = 1/2

sin(pi/3)= sqrt(3)/2

[tex]z=-2(\frac{1}{2} +\frac{\sqrt{3}}{2})[/tex]

[tex]z=-2(cos(\frac{\pi}{3})+sin(\frac{\pi}{3})[/tex]

compare the above equation with use [tex]z=e^{ix}=cosx+isinx[/tex]

x= pi/3

so [tex]z=-2e^{\frac{\pi}{3}i}[/tex]

[tex]z^6=64(e^{\frac{\pi}{3}i})^6[/tex]

[tex]z^6=64e^{\frac{6\pi}{3}i}[/tex]

[tex]z^6=64e^{2\pi*i}[/tex]

Plug in 2pi in the z equation

[tex]z=64e^{2\pi*i}=64(cos(2\pi)+isin(2\pi))[/tex]

So z= 64(1 + i(0))

z=64

So a= 64  and b=0