Respuesta :

Answer:

[tex]\boxed{\boxed{a=1,b=-1}}[/tex]

Step-by-step explanation:

The given expression is,

[tex]z=\sqrt{2}\left[\cos(-\dfrac{\pi}{4})+i\sin (-\dfrac{\pi}{4})\right][/tex]

According to Distributive property,

[tex]=\sqrt{2}\cos(-\dfrac{\pi}{4})+i\sqrt{2}\sin (-\dfrac{\pi}{4})[/tex]

we know that,

[tex]\cos(-\dfrac{\pi}{4})=\cos(\dfrac{\pi}{4})=\dfrac{1}{\sqrt2}[/tex]

and

[tex]\sin(-\dfrac{\pi}{4})=-\sin(\dfrac{\pi}{4})=-\dfrac{1}{\sqrt2}[/tex]

Putting these,

[tex]=\sqrt{2}\cdot \dfrac{1}{\sqrt2}-i\sqrt{2}\cdot \dfrac{1}{\sqrt2}[/tex]

[tex]=1-i\cdot 1[/tex]

[tex]=1-i[/tex]

Comparing this to [tex]a+bi[/tex], we get

[tex]a=1,b=-1[/tex]

Answer: a=1, b=-1

Step-by-step explanation: I got this right on Edmentum

Ver imagen elpink25