Answer:
e. [tex]1.8\times 10^{-6}m^3[/tex]
Step-by-step explanation:
It is given that,
The density of intergalactic space material is [tex]2.5 \times 10^{-27}[/tex] kg per cubic meter.
And the volume of intergalactic space material is [tex]8.0\times 10^{24} m^3[/tex]
So the mass of that much intergalactic space material is,
[tex]m= \rho\times v[/tex], where 'm' is the mass, and 'v' is the volume.
Putting the values we get,
[tex]m=2.5 \times 10^{-27}\times 8.0 \times 10^{24}[/tex]
[tex]m=20\times 10^{(-27+24)}=20\times 10^{-3} kg[/tex]
It is also given that the mass of lead is the same as the mass of the intergalactic space material. Therefore, the mass of lead is [tex]20 \times 10^{-3}=2 \times 10^{-2}kg[/tex]
So the volume of lead is,
[tex]v=\frac{m}{\rho} =\frac{2 \times 10^{-2}}{11300} = 0.00000177 m^3[/tex]
[tex]v=1.77 \times 10^{-6}=1.8\times 10^{-6}m^3[/tex]
So the volume of lead is [tex]v=1.8\times 10^{-6}m^3[/tex].