Let f(x)=10x
What function represents a transformation of f(x) by a vertical stretch with factor 1.25?

A. g(x)=1.25⋅10^x
B. x)=10^0.8x
C. g(x)=10^1.25x
D. g(x)=0.8⋅10^x

Respuesta :

Answer:

Option A is correct.

[tex]g(x)=1.25 \cdot 10^x[/tex] is a function represents a transformation of f(x) by a vertical stretch with factor of 1.25.

Step-by-step explanation:

Given the function: [tex]f(x) = 10^x[/tex]

For a base function f(x) and a constant k > 0,  the function is given by:

g(x) = kf(x), can be sketched by vertically stretching f(x) by a factor of k

if k>1.

Since, factor(k) = 1.25 > 1.

then;

[tex]g(x) = 1.25 f(x)[/tex]                     .......[1]

Substitute [tex]f(x) = 10^x[/tex] in [1];

[tex]g(x)=1.25 \cdot 10^x[/tex]

Therefore, the function represents a transformation of f(x) by a vertical stretch with factor 1.25 is, [tex]g(x)=1.25 \cdot 10^x[/tex]