Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dA}{dt} = 8 \pi(16 \pi + 1)[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:                                                                  [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Implicit Differentiation

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle A = 2\pi rh[/tex]

[tex]\displaystyle r = 2[/tex]

[tex]\displaystyle h = 4[/tex]

[tex]\displaystyle \frac{dr}{dt} = 16\pi[/tex]

[tex]\displaystyle \frac{dh}{dt} = 2[/tex]

Step 2: Differentiate

  1. [Implicit Differentiation] Product Rule:                                                            [tex]\displaystyle \frac{dA}{dt} = 2\pi \bigg( \frac{d}{dt}[r]h + r\frac{d}{dt}[h] \bigg)[/tex]
  2. Simplify:                                                                                                             [tex]\displaystyle \frac{dA}{dt} = 2\pi \bigg( \frac{dr}{dt}h + r\frac{dh}{dt} \bigg)[/tex]

Step 3: Solve

  1. Substitute in variables [Derivative]:                                                                 [tex]\displaystyle \frac{dA}{dt} = 2\pi \bigg( 16\pi(4) + 2(2) \bigg)[/tex]
  2. Evaluate:                                                                                                           [tex]\displaystyle \frac{dA}{dt} = 8 \pi(16 \pi + 1)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Implicit Differentiation

Book: College Calculus 10e