Respuesta :

QUESTION 16

The given inequality is [tex]n-3\geq \frac{n+1}{2}[/tex].


We first multiply through by the least common multiple, which is [tex]2[/tex] to get,

[tex]2(n-3)\geq \frac{n+1}{2} \times 2[/tex]


This simplifies to


[tex]2(n-3)\geq n+1[/tex]


We expand brackets to get,


[tex]2n-6\geq n+1[/tex]


We group like terms to get,


[tex]2n-n\geq 1+6[/tex]


[tex]\Rightarrow n\geq 7[/tex].

We now choose the values from the replacement set

{[tex]-10,-9,-8,...,8,9,10[/tex]}.

The solution set is therefore

{[tex]7,8,9,10[/tex]}


QUESTION 17

We want to solve [tex]\frac{2(x+2)}{3}\:<\:4[/tex]

We multiply through by 3 to get,

[tex]3\times \frac{2(x+2)}{3}\:<\:4\times 3[/tex]


This simplifies to, [tex]2(x+2)\:<\:12[/tex]


We now expand brackets to get,

[tex]2x+4\:<\:12[/tex]


We group like terms to get,

[tex]2x\:<\:12-4[/tex]


[tex]\Rightarrow 2x\:<\:8[/tex]


[tex]\Rightarrow x\:<\:4[/tex]


We now choose the values from the replacement set

{[tex]-10,-9,-8,...,8,9,10[/tex]}.


The solution set is therefore

{[tex]-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3[/tex]}


QUESTION 18

We want to solve [tex]1.3y-12\:<\:0.9y+4[/tex].


We group like terms to get,

[tex]1.3y-0.9y\:<\:4+12[/tex].

We simplify to get,


[tex]0.4y\:<\:16[/tex].


We divide through by 0.4 to get,

[tex]y\:<\:40[/tex].


This time the complete replacement is the solution set of the inequality because all the elements satisfies  [tex]y\:<\:40[/tex].

The solution set is

 {[tex]-10,-9,-8,...,8,9,10[/tex]}


QUESTION 19

We want to solve [tex]-20\geq 8+7k[/tex].


We group like terms to get,


[tex]-20-8\geq 7k[/tex]


This implies that,


[tex]-28\geq 7k[/tex]


We divide through by 7 to get,


[tex]-4\geq k[/tex]

We can rewrite this as [tex]k\leq -4[/tex].


We now choose the values from the replacement set {[tex]-10,-9,-8,...,8,9,10[/tex]}. The solution set is therefore

{[tex]-10,-9,-8,-7,-6,-5,-4[/tex]}