contestada

Calculate how many grams of sodium azide (NaN3) are needed to inflate a 25.0 × 25.0 × 20.0 cm bag to a pressure of 1.35 atm at a temperature of 20.0°C. How much sodium azide is needed if the air bag must produce the same pressure at 10.0°C? The equation is 20NaN3+6SiO2+4KNO3=32N2+5Na4SiO4+K4SiO

Respuesta :

Answer : The mass of [tex]NaN_3[/tex] at temperature [tex]20^oC[/tex] 28.47 g.

The mass of [tex]NaN_3[/tex] at temperature [tex]10^oC[/tex] 29.51 g.

Solution : Given,

Pressure of gas = 1.35 atm

Temperature of gas = [tex]20^oC=273+20=293K[/tex]     [tex](0^oC=273K)[/tex]

Volume of gas = [tex]25\times 25\times 20cm=12500cm^3=12.5L[/tex]   [tex](1L=1000cm^3)[/tex]

Molar mass of [tex]NaN_3[/tex] = 65 g/mole

Part 1 : First we have to calculate the moles of gas at temperature [tex]20^oC[/tex]. The gas produced in the given reaction is [tex]N_2[/tex].

Using ideal gas equation,

[tex]PV=nRT[/tex]

where,

P = pressure of the gas

V = volume of the gas

T = temperature of the gas

n = number of moles of gas

R = Gas constant = 0.0821 Latm/moleK

Now put all the given values in this formula, we get

[tex](1.35atm)\times (12.5L)=n\times (0.0821Latm/moleK)\times (293K)[/tex]

By rearranging the terms, we get the value of 'n'

[tex]n=0.7015moles[/tex]

The moles of [tex]N_2[/tex] = 0.7015 moles

The given balanced reaction is,

[tex]20NaN_3(s)+6SiO_2(s)+4KNO_3(s)\rightarrow 32N_2(g)+5Na_4SiO_4(s)+K_4SiO_4(s)[/tex]

As, 32 moles of [tex]N_2[/tex] produced from 20 moles of [tex]NaN_3[/tex]

So, 0.7015 moles of [tex]N_2[/tex] produced from [tex]\frac{20}{32}\times 0.7015=0.438[/tex] moles of [tex]NaN_3[/tex]

Now we have to calculate the mass of [tex]NaN_3[/tex].

[tex]\text{ Mass of }NaN_3=\text{ Moles of }NaN_3\times \text{ Molar mass of }NaN_3[/tex]

[tex]\text{ Mass of }NaN_3=(0.438moles)\times (65g/mole)=28.47g[/tex]

Therefore, the mass of [tex]NaN_3[/tex] needed are 28.47 g.

Part 2 : We have to calculate the moles of gas at temperature [tex]10^oC[/tex] and same volume & pressure.

Using ideal gas equation,

[tex]PV=nRT[/tex]

Now put all the given values in this formula, we get

[tex](1.35atm)\times (12.5L)=n\times (0.0821Latm/moleK)\times (283K)[/tex]

By rearranging the terms, we get the value of 'n'

[tex]n=0.726moles[/tex]

The moles of [tex]N_2[/tex] = 0.726 moles

The given balanced reaction is,

[tex]20NaN_3(s)+6SiO_2(s)+4KNO_3(s)\rightarrow 32N_2(g)+5Na_4SiO_4(s)+K_4SiO_4(s)[/tex]

As, 32 moles of [tex]N_2[/tex] produced from 20 moles of [tex]NaN_3[/tex]

So, 0.726 moles of [tex]N_2[/tex] produced from [tex]\frac{20}{32}\times 0.726=0.454[/tex] moles of [tex]NaN_3[/tex]

Now we have to calculate the mass of [tex]NaN_3[/tex].

[tex]\text{ Mass of }NaN_3=\text{ Moles of }NaN_3\times \text{ Molar mass of }NaN_3[/tex]

[tex]\text{ Mass of }NaN_3=(0.454moles)\times (65g/mole)=29.51g[/tex]

Therefore, the mass of [tex]NaN_3[/tex] needed are 29.51 g.