Respuesta :

ANSWER

[tex]S_\infty= 686[/tex]


EXPLANATION

The given infinite series is

[tex]98 + 84 + 72 + \frac{432}{7} + ...[/tex]

The sum to infinity of this series is given by the formula,

[tex]S_\infty= \frac{a_1}{1 - r} [/tex]

where the first term of this infinite geometric series is

[tex]a_1 = 98[/tex]


and the common ratio is
[tex]r = \frac{a_2}{a_1} [/tex]


[tex]r = \frac{72}{98} = \frac{6}{7} [/tex]


We substitute these values to obtain,


[tex]S_\infty= \frac{98}{1 - \frac{6}{7} } [/tex]

We simplify the denominator to get,


[tex]S_\infty= \frac{98}{\frac{1}{7} } [/tex]


This simplifies to

[tex]S_\infty= 98 \times 7 = 686[/tex]

Answer:

D. 686

Step-by-step explanation: