Respuesta :

Answer: (m - 2mn - n)/m


Step-by-step explanation:

(m/m-n) - (n/m+n)

[(m/m) - (mn/m)] - [(n/m) + (mn/m)]

[(m - mn)/m] - [(n+mn)/m]

(m - mn - n - mn) / m

(m - 2mn - n) / m  

Answer:

[tex]\frac{m^2+n^2}{(m-n)(m+n)}[/tex]

Step-by-step explanation:

Before we can subtract the fractions we require them to have a common denominator.

the common denominator is (m - n)(m + n)

multiply the numerator/denominator of the first fraction by (m + n) and

multiply the numerator/denominator of the second fraction by (m - n)

= [tex]\frac{m(m+n)}{(m-n)(m+n)}[/tex] - [tex]\frac{n(m-n)}{(m-n)(m+n)}[/tex]

distribute and simplify the numerators

= [tex]\frac{m^2+mn-mn+n^2}{(m-n)(m+n)}[/tex]

= [tex]\frac{m^2+n^2}{(m-n)(m+n)}[/tex]