Respuesta :
Answer: (m - 2mn - n)/m
Step-by-step explanation:
(m/m-n) - (n/m+n)
[(m/m) - (mn/m)] - [(n/m) + (mn/m)]
[(m - mn)/m] - [(n+mn)/m]
(m - mn - n - mn) / m
(m - 2mn - n) / m
Answer:
[tex]\frac{m^2+n^2}{(m-n)(m+n)}[/tex]
Step-by-step explanation:
Before we can subtract the fractions we require them to have a common denominator.
the common denominator is (m - n)(m + n)
multiply the numerator/denominator of the first fraction by (m + n) and
multiply the numerator/denominator of the second fraction by (m - n)
= [tex]\frac{m(m+n)}{(m-n)(m+n)}[/tex] - [tex]\frac{n(m-n)}{(m-n)(m+n)}[/tex]
distribute and simplify the numerators
= [tex]\frac{m^2+mn-mn+n^2}{(m-n)(m+n)}[/tex]
= [tex]\frac{m^2+n^2}{(m-n)(m+n)}[/tex]